Understanding your project lifecycle greenhouse gas footprint:

About the Climate Positive Pathfinder

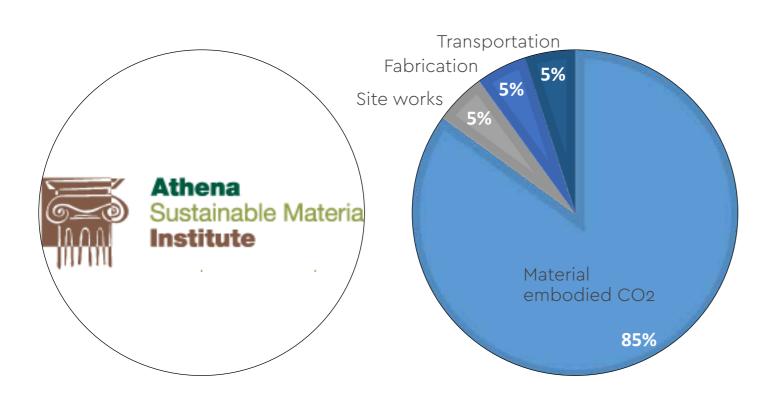
Designed by Landscape Architects for Landscape Architects

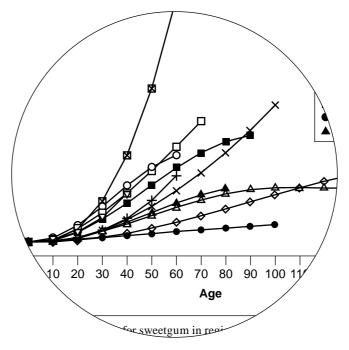
- Developed by Landscape Architect
 Pamela Conrad with a Landscape
 Architecture Foundation grant
- The App was launched in November 2019 at the IFLA world conference
- Version 2.0 released August 2020

Free and online

- Online calculator no software to download
- No MAC or PC limitations
- It is crowd funded, so donations are most welcome to provide ongoing improvements

Simple design tool


- It is intended as a design and planning tool - not an indepth carbon accounting tool
- It is simple to use
- Allows for design iterations and version comparison
- Can be used for student projects and unbuilt projects


AILA is an Allied partner with the App

- AILA now a allied partner along with CMG Landscape Architects, Atelier 10, the Landscape Architecture Foundation, ASLA IFLA, CSLA, & Architecture 2030
- Metric version made following request from AILA and the Landscape Institute
- The biggest question we have been asked is is this American based data applicable to Australia?
 - The short answer is yes

Understanding assumptions behind the Climate Positive Pathfinder

Athena data - and average emissions

- The Athena Sustainable Materials Institute is a non-profit research collaborative bringing life cycle assessment to the construction sector
- Average embodied carbon for each material
- Embodied carbon from Environmental Product Declaration forms

Construction emissions embodied in materials

Additional 15% on top to cover:

- Transport 5%
- Fabrication 5%
- Site Work 5%
- Emissions from lifecycle replacements allowed for in 50-year timeframe

Averaged tree

- Simplified to small, medium and large trees
- Evergreen or deciduous
- Urban trees not forest trees
- Data from extensive research by the US department of Agriculture, where they looked at hundreds of urban trees in different climate zones in America.
- It assumes a non-linear parabolic sequestration rate

Averaged climatic growth zones

- Growth zones determine number of growing days per year
- Determined by project location and extrapolated globally from USDA growth zones
- Brisbane / Sydney / Canberra /Adelaide / Perth / Hobart are Central zone.
- Darwin / Cairns / Broome is in the South zone

Climate Positive Pathfinder - Data inputs

Materials (Emissions)

- Felled trees at the beginning of a project, and lost carbon and future sequestration
- Embodied carbon in concrete and steel reinforcing and other materials
- Embodied carbon in aluminium seats and furniture
- Embodied carbon in steel and galvanised products like handrails and balustrades
- Direct carbon emissions from transport and installation, workers vehicles etc.
- Embodied carbon in material replacement costs

Plants (Sequestration)

- Primary carbon sequestration in trees
- Secondary carbon sequestration in shrubs
- Carbon sequestration in soil
- Carbon sequestration in wetlands

Operations (Emissions)

- Direct emissions from ongoing maintenance by 2 stroke fossil fuel powered machinery leaf blowers etc.
- NO₂ emissions from lawn fertiliser regimes
- Construction emissions from growing, transporting and planting trees
- [Loss of sequestered carbon in trees through bushfire]*
- [Loss of sequestered carbon in trees and soil at time of demolition]*

^{*}Not included in app.